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Abstract
A well-known discrete-time, single-server queueing system with mean arrival
rate λ and mean departure rate µ is considered from the perspective of the
area, A, swept out by the queue occupation process during a busy period.
We determine the exact form of the tail of the distribution, Pr(A > x); in
particular, we show that Pr(A > x) ∼ Cx−1/4 exp(−Dx1/2) for all ρ �= 1,
where ρ ≡ λ/µ, and expressions for C and D are given. For the critical
case ρ = 1 we show that Pr(A > x) ∼ C ′x−1/3, with C ′ also given. A
simple mapping, used in the derivation, establishes a connection with compact
directed percolation on a square lattice. As a corollary, therefore, we are also
able to specify the large-area asymptotic behaviour of this model at all points
in the phase diagram. This extends previous scaling results, which are only
valid close to the percolation threshold.

PACS numbers: 02.50.−r, 05.50.+q, 64.60.Cn

1. Introduction

Queues are ubiquitous in the physical and social sciences, yet our understanding of certain
variables associated with the queueing process is still far from complete, even for relatively
simple examples (see, e.g., [1]). In this paper, we study a well-known discrete-time queueing
system from the perspective of the area swept out by the queue occupation process during
a busy period. It turns out that this area variable has a very interesting distribution, the tail
of which can be determined exactly by exploiting a mapping onto lattice polygons. This has
important applications in its own right. In addition, the same mapping establishes a connection
with compact directed percolation (CDP) on a square lattice [2, 3]. Thus, as a straightforward
corollary, the results obtained also determine the large-area asymptotic behaviour of this
model at all points in the phase diagram. This extends previous scaling results [4, 5], which
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Figure 1. Queue occupancy, Nt, versus time, t, for a given queueing event. The sequences of
arrivals (A) and departures (D) are indicated (early-arrival, late-departure scheme), and different
‘customers’ a, b, c, etc are highlighted to clarify their progress through the queue. For this event,
the busy period T = 10 and the cumulative waiting-time A = 17.

are only valid for parameters tuned to be close to the percolation threshold, and also adds
credence to widely held beliefs (unproven in general) about the off-critical behaviour of all
percolation-type transitions [6].

The single-server, discrete-time queue in question (see figure 1) is characterized by a
mean arrival rate, λ and a mean departure (or service) rate, µ. Related to these is the traffic
load ρ = λ/µ. To be precise, in any time-slot the probability of an arrival (or departure) is
λ (or µ), whilst the probability of no arrival (or departure) is λ̄ ≡ 1 − λ (or µ̄ ≡ 1 − µ),
and arrivals and departures are independent. This is referred to as the Geo/Geo/1 queue [1],
symbolizing the fact that the gaps between successive arrivals or departures are geometrically
distributed. Starting from the time of the first arrival into an otherwise empty queue, the busy
period, T, is the time until the queue is next empty. It is well known that Pr(T < ∞) = 1
if ρ < 1, and the queue is stable (positive recurrent). Conversely, Pr(T < ∞) < 1 when
ρ > 1 and the queue is unstable (defective), i.e. there is a nonzero probability that T is infinite.
Quantities such as the mean busy period, T1, therefore diverge as ρ → 1, and the behaviour
is reminiscent of that encountered in the theory of critical phenomena. The terminology of
the latter is quite natural for characterizing queueing behaviour (see also, e.g., [7]), and we
identify the Geo/Geo/1 queue as being in the CDP universality class.

The area, A, swept out by the queue occupation process during a busy period is the
integrated (or cumulative) waiting-time. Thus, if the busy period is the number of hours
taken by the server to clear the queue, then the cumulative waiting-time is the total number
of hours spent by all the ‘customers’ waiting for the queue to clear (the term ‘customer’ is
used in a generic sense to describe the queueing entities, whatever they may be in reality).
Both are important measures of throughput and performance, but whilst much is known about
the former, very little is known about the latter. Here, we show that the tail of the area
distribution, Pr(A > x), has the asymptotic behaviour Pr(A > x) ∼ Cx−1/4 exp(−Dx1/2) for
all ρ �= 1, and explicit expressions for C and D are given. An underlying duality means that
this applies even for the case ρ > 1, provided that one is only concerned with the distribution
of finite events. In contrast, for the critical case, ρ = 1, the behaviour is quite different,
Pr(A > x) ∼ C ′x−1/3. Taking the continuous-time limit, we also derive the tail of the
distribution for the corresponding continuous-time M/M/1 queue (M stands for Markovian).
A solution for the latter, for ρ < 1, has been given in [8] using quite different techniques. The
agreement found provides, in a satisfying way, independent confirmation of the correctness of
the results, as well as their extension to ρ � 1 in the continuous-time case.
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Figure 2. A staircase polygon representation of the queueing event depicted in figure 1. The upper
directed walk (i) corresponds to arrivals, the lower directed walk (ii) corresponds to departures and
the queue occupancy at a given time can be read-off diagonally (top–left to bottom–right). The
weight of the event is λ5λ̄5µ6µ̄4.

It is significant that the results also offer, through a simple mapping, new insights into
CDP. To set the scene, cluster or avalanche1 models, especially those which exhibit non-
equilibrium phase transitions associated with absorbing states [9, 10], are widely employed in
the study of phenomena as diverse as epidemics [9], forest-fires [6], heterogeneous catalysis
[9], self-organized criticality in sandpiles [11, 12], solar flares [13], traffic jams [7] and so on.
Many of these models are in the directed percolation (DP) universality class [9, 10, 14] and
are analytically intractable, so one has to rely extensively on simulations. On the other hand,
models in the CDP universality class are often amenable to analytic treatment, which makes
them of pedagogic value. The main new result concerns the asymptotic behaviour of the area
probability, PA, i.e. the cluster-size distribution, for CDP on a square lattice [2, 3]. Specifically,
at any point away from the percolation threshold, one has that PA ∝ A−θ exp(−DA1/2) as
A → ∞, with θ = 3/4. Such off-critical behaviour, with suitably generalized exponents,
is conjectured to be typical of all percolation-type transitions [6]; the present case is one of
the rare instances wherein this can be established rigorously. The value θ = 3/4 disagrees
with the value θ = 4/3 given in [15] in the context of another model in the CDP universality
class. This is not a trivial matter, since precisely at the percolation threshold PA ∝ A−τ with
τ = 4/3 [5, 11]. The source of the confusion is traced to an incorrect assumption about the
form of a cross-over scaling function, which is given here in full.

2. A mapping onto lattice polygons and the busy period distribution

A typical event for the discrete-time Geo/Geo/1 queue is shown in figure 1. The service
protocol is first-come, first-served, and arrivals and departures within a given time-slot occur
according to the early-arrival, late-departure scheme. Each time-slot is taken to be one time
unit. One can represent the arrival and departure sequences as separate, directed walks on
a square lattice with appropriately weighted steps (figure 2). Each arrival (or non-arrival)

1 The distinction between ‘cluster’ and ‘avalanche’ in the present context is basically a matter of semantics; both
terms are used interchangeably in this paper.
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corresponds to a step �y = 1 (�x = 1) of the ‘arrivals walk’ with weight λ (λ̄), apart from
the first step, which has �y = 1 and weight 1. Conversely, each departure (or non-departure)
corresponds to a step �y = 1 (�x = 1) of the ‘departures walk’ with weight µ (µ̄), apart
from the first step, which has �x = 1 and weight 1. Both walks start at the origin. If the event
is finite, the two walks will eventually meet and annihilate. The resulting structure (figure 2)
is known as a staircase polygon [16–18].

For a given queueing event, we define the activity of its associated staircase polygon to
be (λ̄µ̄x ′)i/2(λµy ′)j/2zA, where i, j are the total number of perimeter steps in the x and y
directions, respectively, and x ′, y ′ are dummy variables which keep track of the polygon width
(i/2), height (j/2) and perimeter length (i + j ). The busy period duration, T, is given by
T = (i + j − 2)/2, whilst the cumulative waiting-time, A, is just the area of the polygon. By
construction, the probabilistic weight of an event is determined by setting x ′ = y ′ = 1 and
z = 1 in the corresponding activity, and multiplying by (λµ̄)−1. The latter factor arises because
the initial arrival is assumed to occur with probability 1. It follows that all the quantities of
interest may be obtained from the area–perimeter generating function for staircase polygons
[4]. For the present purpose, one can set y ′ = x ′ without loss of generality.

It is natural to define a (probability) generating function, G̃(x ′, z), which is related to the
joint probability, P(T ,A), as follows:

G̃(x ′, z) ≡ λµ̄
∑
T ,A

P (T ,A)x ′T +1zA. (1)

In (1), the sum is taken over all possible finite events. Based on the connection with staircase
polygons, one can show that G̃(x ′, z) obeys a nonlinear functional equation of quadratic type
[4, 17],

G̃(x ′, z) = αx ′2z + βx ′zG̃(x ′, z) + G̃(x ′, z)G̃(x ′z, z) (2)

where α = λλ̄µµ̄ and β = λµ + λ̄µ̄. This functional approach is both elegant and powerful;
for example, many results in queueing theory relating to the busy period, T, can be deduced
from (2) very quickly by setting z = 1. We illustrate some of these below, but with the main
objective of highlighting certain mathematical structures which will be useful in what follows.
The asymptotic behaviour of the area distribution, on the other hand, is controlled by G̃(1, z)

in the limit z → 1−. This limit is much more subtle and its discussion is deferred until the
next section.

From (1) and (2) we have the following result for the busy period probability, PT , and its
associated generating function, G̃(x ′, 1),

G̃(x ′, 1) ≡ λµ̄
∑
T

PT x ′T +1 = 1 − βx ′ −
√

(1 − βx ′)2 − 4αx ′2

2
. (3)

Since the sum is over finite events, Pr(T < ∞) = (λµ̄)−1G̃(1, 1). There are two distinct
regimes to discuss. When � ≡ λ − µ < 0, it follows from (3) that queueing events are
finite with probability 1. Conversely, infinite events can occur when � > 0 with probability
P∞ ≡ 1 − Pr(T < ∞) = (λµ̄)−1� [3]. The moments, Tk , can be obtained in the usual
manner by differentiating (3) repeatedly with respect to x ′. For the mean busy period one finds
that T1 = (µ − λ)−1 for � < 0. For � > 0, the relevant quantity to consider is the mean busy
period given that the events are finite; in other words, one needs to condition PT by dividing by
Pr(T < ∞) = 1 −P∞. The result is that T1 = (λ − µ)−1, and thus T1 = |�|−1 for all λ �= µ.
This illustrates an important general principle; statistical quantities below (� < 0) and above
(� > 0) the critical point are related by the duality transformation λ ↔ µ. This is discussed
further in section 4. Note that α, β and |�| are all invariant under this transformation. The
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introduction of a further variable, η, which takes the value η = λµ̄ when � < 0 and η = λ̄µ

when � > 0, i.e. η = min{λµ̄, λ̄µ}, means that all results can be written in a form which is
valid either side of the critical point. Regarding the probability, PT , it is possible to invert (3)
explicitly,

PT = βT +1

2η(T + 1)ξT +1
[ξLT (ξ) − LT −1(ξ)]; ξ ≡ β

(β2 − 4α)1/2
(4)

where LT (ξ) is the Tth Legendre polynomial. This expression is exact for all T � 1. Of
particular interest, however, is the asymptotic form of PT as T → ∞, and this can be evaluated
using standard results from the theory of Legendre functions

PT ∼ α1/4(β + 2
√

α)1/2

2
√

πη
T −3/2 exp

{
−T log

(
1

β + 2
√

α

)}
. (5)

Here, and throughout the paper, the statement X ∼ Y is made in the strict sense that
X/Y → 1 in a specified limit. Several things about (5) are worth noting. First, it is valid for
all λ,µ. Second, β + 2

√
α � 1, and the equality is only attained when λ = µ. Thus, one

has pure power-law behaviour at the critical point. Third, the tail of the survival probability,
Pr(T > t), is of the form Pr(T > t) ∼ t−1/2g(ζ t1/2), where ζ = [−log(β + 2

√
α)]1/2. The

function g(s) has the following limits:

g(s) ∼ α1/4(β + 2
√

α)1/2

2
√

πη
s−2 exp{−s2}; s → ∞ (6)

g(0) = 1√
πµµ̄

. (7)

In the terminology of critical phenomena this is typical, cross-over scaling behaviour, except
that there is no requirement here that |�| is small. However, it is only in limit |�| → 0, when
η → µµ̄ and ζ → |�|/2(µµ̄)1/2, that one can use (5) to calculate the asymptotic behaviour
of the moments,

Tk ∼ �
(
k − 1

2

)
4k−1

√
π

(µµ̄)k−1

|λ − µ|2k−1
. (8)

This result, which can also be derived by directly manipulating (3), holds for all k � 1.
Conversely, given (8), one can uniquely determine (5) in the limit |�| → 0.

3. Asymptotic behaviour of the area variable

The mean area, A1, can be obtained by differentiating (2) with respect to z. The result is
A1 = (α/η)|λ − µ|−2. The principal objective of the present work, however, is to establish
the asymptotic behaviour of the tail of the area probability distribution, Pr(A > x), which is
determined by the singular part of G̃(1, z) as z → 1−. The latter has been obtained from a
formal q-series solution of (2) after a long and difficult analysis [18]. In the present context,
the key result can be written as

G̃(1, z) ∼ λµ̄ − �

2
+

|�|
2
√

κ
(1 − z)1/3 Ai′(κ(1 − z)−2/3)

Ai(κ(1 − z)−2/3)
(9)

where Ai(s) is the Airy function and Ai′(s) is its derivative, and

4

3
κ3/2 = log(λ̄µ̄) log

(
λ

µ

)
+ 2Li2(λ) − 2Li2(µ) (10)
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where Li2(s) is the dilogarithm function and it is understood that κ � 0 is real. Note that
κ = 0 when λ = µ. With reference to (1), the asymptotic behaviour of the area probability,
PA, can be evaluated by inverting (9) using contour integration techniques. The basic method
for problems of this type is covered in [16, 19], with the result that for A → ∞,

PA ∼ |�|
2η

√
κ

A−4/3f (
√

κA1/3) (11)

f (s) = −
∞∑

k=0

Ck

�
(

2k−1
3

) s2k; f (s) > 0. (12)

The Ck in (12) are the Taylor series coefficients of F(s) ≡ −Ai′(s)/Ai(s) when expanded
about the origin. Using the fact that F(s) obeys a Riccati equation, F(s)2 − F ′(s) − s = 0,
we have

Ck+1 = 1

k + 1

k∑
i=0

CiCk−i; k � 2 (13)

with C0 = 31/3�
(

2
3

)/
�

(
1
3

)
, C1 = C2

0 and C2 = C0C1 − 1
2 . It is important to stress that the

function f (s) is entire and that (11) holds for all λ,µ.
The above results are relatively straightforward extensions of what is already known.

What has not been identified to date, however, is the precise asymptotic behaviour of f (s) as
s → ∞. This is given by

f (s) ∼ 1√
π

(
4

3

)1/4

s7/4 exp

(
−

(
16

3

)1/2

s3/2

)
. (14)

We shall discuss the derivation of this result shortly. Accepting it for now, it follows that for
λ �= µ (i.e. κ �= 0) and A → ∞,

PA ∼ 1√
2π

(
1

3

)1/4 |�|κ3/8

η
A−3/4 exp

(
−

(
16

3

)1/2

κ3/4A1/2

)
. (15)

With regard to the tail of the area probability distribution, one therefore has

Pr(A > x) ∼ 1

2
√

π

(
3

4

)1/4 |�|
ηκ3/8

x−1/4 exp

(
−

(
16

3

)1/2

κ3/4x1/2

)
. (16)

This is of the form Pr(A > x) ∼ Cx−1/4 exp(−Dx1/2) for all λ �= µ. The distribution
has a heavy (Weibull-like) tail, and it is somewhat surprising to encounter such rich behaviour
in so simple a system. For λ = µ one can take the limit |�| → 0 in (11), noting that
κ → |�|2/4(µµ̄)4/3, to give

Pr(A > x) ∼ 31/3

�
(

1
3

)
(µµ̄)1/3

x−1/3. (17)

These results are of direct relevance to a variety of applications encountered within the
traditional domain of queueing theory (ranging from communication networks to inventory
processes) [1]. The key message is that ‘area’ distributions appear to be naturally long tailed,
with important consequences for the likelihood of ‘extreme’ events occurring.

It remains to establish (14). The direct approach, using, e.g., steepest descent techniques,
is technically challenging. Fortunately, an alternative method is available. This involves
deriving PA for |�| small but nonzero, using the moments as a guide, and deducing (14), and
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hence (15) and (16), retrospectively. The argument runs as follows. In the limit s → ∞, the
function F(s) ≡ −Ai′(s)/Ai(s) has the following asymptotic expansion [20]:

F(s) ∼ s1/2
∞∑

k=0

aks
−3k/2 = s1/2 +

1

4
s−1 − 5

32
s−5/2 + · · · (18)

where the coefficients ak obey a quadratic recurrence relation

ak = −1

2

k−1∑
i=1

aiak−i −
(

3k

4
− 1

)
ak−1; k � 2 (19)

with a0 = 1 and a1 = 1/4. A closed-form expression for ak is not available. However, by
using results that relate F(s) to certain hypergeometric functions [20], one can derive in the
limit k → ∞,

ak ∼ (−1)k+1
√

2

(
3

256

)k
(4k)!

(k)!(2k)!
. (20)

From (9) and (18), one establishes that G̃(1, 1 − ε) has an asymptotic expansion in integer
powers of ε ≡ 1 − z. Further, in the limit |�| → 0 the divergence of the area moments, Ak ,
can be evaluated asymptotically for all k � 1 as

Ak ∼ (−1)k

µµ̄

∂kG̃(1, 1 − ε)

∂εk

∣∣∣∣
ε=0

∼ (−1)k+1ak23k−1k!
(µµ̄)2k−1

|λ − µ|3k−1
. (21)

From this and (20), it follows that in the twin limits |�| → 0 and k → ∞,

Ak ∼ 1√
2π

(
3

2

)k

�

(
2k +

1

2

)
(µµ̄)2k−1

|λ − µ|3k−1
. (22)

This result, interesting in its own right, is sufficient to determine the asymptotic behaviour
of PA for |�| ≈ 0. We note that any distribution whose moment sequence has the property
(22) is uniquely determined by its moment sequence. The relevant test is known as the
Carleman criterion [21, 22], i.e. �k�1A

−1/2k

k = ∞, which is seen to be satisfied since, from
(22), A

−1/2k

k = O(k−1) as k → ∞. An extension of the basic reasoning leads to the stronger
statement that all such distributions are asymptotically equivalent as A → ∞; in other words,
the asymptotic behaviour of PA is uniquely determined by (22). Consider, now, the ansatz
PA ∼ ĈA−θ exp(−D̂Aξ ). By evaluating the moments in relation to (22) one finds that such a
solution exists, namely,

PA ∼ 1

2
√

π

(
1

6

)1/4 |λ − µ|7/4

(µµ̄)3/2
A−3/4 exp

{
−

(
2

3

)1/2 |λ − µ|3/2

µµ̄
A1/2

}
. (23)

By uniqueness, this is the required asymptotic solution for fixed |�| ≈ 0 and A → ∞.
Comparison with (11), noting that κ ≈ |�|2/4(µµ̄)4/3 for |�| ≈ 0, then shows that,
asymptotically, f (s) is given by (14) as s → ∞. But, since f (s) itself is independent
of �, this result must be independent of the assumption that |�| ≈ 0. One can then use (14)
to establish (15) and (16) for all values of κ .

Confirmation of (16) by another route comes from considering the equivalent problem
for the continuous-time version of the Geo/Geo/1 queue, which is referred to as the M/M/1
queue [1]. This has recently been solved for ρ < 1 using completely different techniques, i.e.
by analysing a continued fraction representation of the Laplace transform of the distribution
[8]. By taking the continuous-time limit here we can also derive such results. To do so one
simply needs to introduce the time-step, �, into the above analysis through the substitutions
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t

Rt

Figure 3. An alternative representation of figure 1, establishing a connection with a random walk
on a directed triangular lattice (solid line).

λ → λ̂�, µ → µ̂� and A → Â�−1, and let � → 0. When the traffic load ρ = λ̂/µ̂ < 1,
one has

Pr(Â > x) ∼ 1 − ρ

ρ
√

2πγ
x−1/4 exp{−γ x1/2} (24)

where γ = 2µ̂1/2
√−2(1 − ρ) − (1 + ρ) log ρ. This is the exact result obtained in [8], which

establishes the correctness of (16), and hence (14). The analysis in [8] does not, however,
provide information about the null recurrent case, ρ = 1, or the defective case, ρ > 1. The
latter (for finite events) is given by (24) under the transformation λ̂ ↔ µ̂ and ρ ↔ ρ−1, whilst
the former is given by taking the continuous-time limit of (17). Thus, as well as verifying
existing results, the analysis for the Geo/Geo/1 queue adds to what is known about the area
distribution in the M/M/1 queue.

We end this section by remarking that the queue occupation process for the Geo/Geo/1
queue is equivalent to a random walk on a directed triangular lattice. Consider figure 3, which
is a redrawing of figure 1. One is basically adding successive columns whose height, in relation
to the preceding column, can increase or decrease by one unit, or stay the same. Identifying
the top of each column with successive steps then defines a random walk, Rt , with transition
probabilities P+ = λµ̄, P− = λ̄µ and P0 = λµ + λ̄µ̄. The results given above then relate to
the time of first return, T ′ = T + 1, and the area swept out, A′ = A, of such a process, noting
that α = P+P− and β = P0. This points to other applications. For example, if Rt denotes the
random evolution of the power in some burst (eruption) process, then A′ is simply the total
energy released in the burst. Or, if Rt denotes the random excess strain or overload (beyond
the critical fatigue threshold) in a mechanical system, then A′ is a measure of the cumulative
fatigue damage incurred, which relates to the lifetime of the system. Of course, this model is
only an abstraction of such real world problems, but it serves to highlight features one might
expect to observe in reality regarding the tail of the relevant distributions.

4. The link to compact directed percolation

CDP, which is closely related to the voter model and to the Glauber–Ising model at zero
temperature [9], has been widely studied. It was originally proposed by Domany and Kinzel
in the context of a cellular automaton [2]. The determination of certain critical exponents and
hyper-scaling relations followed [3, 23], and further extensions have included modified models
to reflect the presence of impenetrable walls and other barriers [24–30]. In this context, we
also note the avalanche model of [15] which, although based around the area swept out by
Dyck paths, is in the CDP universality class. Recently, the formal connection with staircase
polygon models has led to a deeper understanding of the scaling behaviour and of certain
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time

 x  y

Figure 4. A cluster or avalanche event (full circles) of weight p4
xq6

xp5
yq5

y . The duration of the
event T = 10 and the size or area A = 17.

scaling functions [4, 5]. However, these results, obtained by analysing (2) using dominant
balance techniques [31], are only valid near the percolation threshold.

The model is defined as follows [2–5]. At time t = 0, a single site in a directed square
lattice becomes active with probability 1. At integer time t > 0, sites are updated depending
upon the states of their nearest neighbour preceding sites (figure 4). If one or other (but not
both) of the preceding sites is active, then the site becomes active with probability px or py ,
depending upon which direction is invoked. However, if both preceding sites are active, then
the site becomes active with probability 1. This rule ensures that the clusters are compact. With
reference to figure 4, for finite events the cluster size is the area, A, of the (staircase) polygon
defined by the closed walk (on the dual lattice) which bounds the active sites as tightly as
possible. The connection between this process and the queueing process depicted in figure 2
is self-evident. In fact, all the results obtained above for the Geo/Geo/1 queue map over
through the simple replacement λ = py and µ̄ = px . The percolation threshold is then given
by � ≡ px + py − 1 = 0, i.e. px + py = 1 [3]. Behaviour below (� < 0) and above (� > 0)
this threshold is related by the transformation px ↔ qy and py ↔ qx . This has been clearly
explained in [3] in terms of a fundamental duality between active and inactive sites, the key
point being that there are actually two absorbing states: all sites active and all sites inactive
(see also [9]).

It suffices to summarize the main new results that follow from the identified mapping.
Regarding the area probability, PA, this is given by (15) for all |�| �= 0. Thus, one has
PA ∝ A−θ exp(−DA1/2) as A → ∞, with θ = 3/4. It is interesting that this scaling form is
also seen in relation to the partition function for models of polymer collapse [32], with which
there appears to be a deep connection. Near to the percolation threshold, i.e. |�| ≈ 0, one has
the striking result

PA ∼ 1

2
√

π

(
1

6

)1/4 |px + py − 1|7/4

(pxpy)3/2
A−3/4 exp

{
−

(
2

3

)1/2 |px + py − 1|3/2

pxpy

A1/2

}
.

(25)



8430 M J Kearney

It should be noted that a value of θ = 4/3 was proposed in [15], based on incomplete
knowledge about the behaviour of f (s) as s → ∞. In particular, the prefactor s7/4 in (14) was
missing. However, as correctly identified in [15], and before that in [11], at the percolation
threshold itself one expects PA ∝ A−4/3, and indeed from (11) it follows that

PA ∼ A−4/3

32/3�
(

1
3

)
(pxpy)1/3

; |�| = 0. (26)

With these results, the asymptotic behaviour of the cluster-size distribution is determined
at all points in the phase diagram. There is a wider significance to this. For standard
percolation, controlled, say, by a single lattice parameter, p, whether directed or undirected,
it has been proved that as A → ∞, log PA ∝ −A for p � pc and log PA ∝ −A1−1/d

for p � pc, where pc is the percolation threshold and d is the dimensionality [33–35].
This has led to the conjecture that the off-critical behaviour in percolation is of the form
PA ∝ A−θ± exp(−D±Aξ±) for all p �= pc as A → ∞. The present problem provides a rare
instance wherein this can be shown to be true, albeit with ξ− = 1/2 (not ξ− = 1) below
the percolation threshold, which is a reflection on the compact nature of the model. The fact
that ξ+ = 1/2 suggests that the (rare) clusters that contribute in standard two-dimensional
percolation for p > pc are, essentially, ‘compact’ in nature [6].

Viewing the clusters as avalanches, their duration can be characterized using the results
given in section 2 after the replacement λ = py and µ̄ = px . Again, these are valid everywhere,
not just near to the percolation threshold, which extends what has been given previously in the
literature.

5. Conclusions

In this paper, the area swept out by the queue occupation process during a busy period has
been considered for the discrete-time Geo/Geo/1 queue and its continuous-time counterpart,
the M/M/1 queue. In particular, the tail of the area distribution has been determined exactly.
The analysis is based on the study of a nonlinear functional equation, and it is clear that
this approach provides new and powerful insights into the behaviour of queueing systems
in general. Of particular significance is the fact that no assumption has been made about
the relative values of the arrival and departure rates. From an applications perspective, it is
relevant that the distribution has a heavy tail.

A simple mapping enables the derived results to be applied immediately to compact
directed percolation on a square lattice. For the cluster-size distribution, PA, the most important
new finding has been to show that PA ∝ A−3/4 exp(−DA1/2) as A → ∞ at all points in the
phase diagram, except precisely at the percolation threshold. This extends previous scaling
results, which are only valid near to the percolation threshold, and provides one of the most
comprehensive analyses to date for any percolation-type problem.
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